Kenny Paterson ROYAL

HOLLOWAY

Information Security Group UNIVERSITY

OF LONDON

Overview

* Why do we need secure channels?

* What properties should they have?
* |Literature on secure channels

* Extended Example: TLS

Why do we need secure channels?

e Secure communications is the most common real-
world application of cryptography today.

No, it's not MPC for sugar beet auctions!

* Secure channels are extremely widely-deployed in
practice:

SSL/TLS, DTLS, IPsec, SSH, OpenVPN,...
WEP/WPA/WPA2

GSM/UMTS/LTE

Cryptocat, OTR, SilentCircle,...

(QUIC, MinimalT, TCPcrypt)

Mostly, but not exclusively in the 2-party case.

What security properties should they have?

* Confdentiality — privacy for data
* Integrity —detection of data modification
* Authenticity — assurance concerning the source of data

* Allin the face of active attackers who can modify, delete, inject, re-order
network messages.

* These threeRroperties are relatively easy to achieve using Authenticated
Encryption (AE) or AEAD.

* Recall AE notion from Monday.

 AEAD: some data encrypted and integrity protected, other data (the header)
only integrity protected.

* But AE/AEAD were not available at the time many of today’s systems were
designed.

. Nc|)|‘<ce that authenticated key establishment (AKE) is out-of-scope for this
talk.

* We assume the keys are already in place.

* A major assumption, but a different summer school!

What security properties should they have?

Less obvious security properties:

Anti-replay — detection that messages have been repeated.

Drop-detection — detection that messages have been deleted by the
adversary or dropped by the network.

* Particularly acute for the last message on a channel.

* Cookie cutter attack.
Prevention of re-ordering attacks.

* Preserving the relative order of messages in each direction.
Prevention of re-ordering attacks against duplex communications.

* Preserving the relative order of messages in both directions.
Prevention of traffic-analysis.

* Using traffic padding and length-hiding techniques.

None of these properties are met by using raw AE/AEAD!

What additional properties should they have?

* Fast, low memory requirements, on-line/parallelisable
crypto-operations.

* Performance is heavily hardware-dependent.

* May have different algorithms for different platforms.
* |PR-friendly.

* Thisissue has slowed down adoption of many
otherwise good AE algorithms, e.g. OCB.

* Easytoimplementin aside-channel-free manner.

* Rules out many candidates!

What additional properties should they have?

* Clean and well-defined interface for applications.

* Related questions:

* Does the channel provide a stream-based functionality or a
message-oriented functionality?

» Doesthe channel accept messages of arbitrar?/ length and
perform its own fragmentation and reassembly, oris there a
maximum message length?

* How is error handling performed? Is a single error fatal, leading
to tear-down of channel, oris the channeltolerant of errors?

* Does the secure channel itself handle retransmissions? Or is this
left to the application? Or is it guaranteed by the underlying
network transport?

* Doesthe channel offer data compression?

* These are design choices that can have a substantial impact on
security.

* They are not well-reflected in security definitions for AE/AEAD.

How do we build secure channels?

* Basic messages so far:

* We can start with AE/AEAD, but must recognise that
it's only a starting point.

* There are many other issues that arise in designing a
practical secure channel protocol.

* And many design choices to be made.
* Which themselves can have security consequences.

* Don'ttry this at home!

What does the literature tell us?

* Shoup (http://shoup.net/papers/skey.pdf, 1999):
* 2 pages onsecure sessionsin a 5o page+ paper on key exchange.

* Simulation-based rather than game-based indistinguishability
notions.

* "“ltshould be simple to fill in the details...”
* (Canetti (eprint 2000/067):

* The Universal Composability framework.

* Heavy use of ideal secure channels.

* Impractical construction of secure channels via one-time use of
public keys and ideal authenticated channels.

* Needs non-committing encryption to achieve UC against adaptive
corruptions.

* Canetti-Krawczyk (eprint 2001/040):

* Basic definition for secure channels using game-based,
indistinguishability notion.

n e (Construction via “EtM".

What does the literature tell us?

* (Canetti-Krawczyk (eprint 2002/059):

UC notion for secure channels, realization using EtM.

* Bellare-Kohno-Namprempre (CCS'02):

Game-based stateful security notions for AE.

Capturing reordering and dropping attacks in addition to the
usual CIA attacks.

* Kohno-Palacio-Black (eprint 2003/177):

Explicit consideration of reordering, replay, packet drop issues in
game-based setting.

Different models allowing/denying different combinations of
features.

What does the literature tell us?

 Maurer-Tackmann (CCS'10)

* Secure channels in the “constructive cryptography”
framework.

* P.-Ristenpart-Shrimpton (Asiacrypt'11)

* LH-AEAD notion.

* Incorporating basic length-hiding into AEAD notions.
* Jager-Kohlar-Shage-Schwenk (Crypto’12)

* ACCE: secure key establishment and channel definition
built on LH-AEAD + key exchange.

* Monolithic and hard to work with, but justified for
analysing TLS.

* Used in Krawczyk-P.-Wee (Crypto’13) to analyse many TLS
ciphersuites.

Summary of the literature

Lots of literature on AE/AEAD.

Much less on the more complex secure channel
primitive.

Current models are far from capturing all of
subtleties of secure channels as they are used in

practice.
There is a great research opportunity here!

Extended example: TLS

SSL = Secure Sockets Layer.
Developed by Netscape in mid 1990s.
SSLv2 now deprecated; SSLv3 still widely supported.

TLS =Transport Layer Security.
IETF-standardised version of SSL.
TLS 1.0 = SSLv3 with minor tweaks, RFC 2246 (1999).
TLS 1.1 =TLS 1.0 + tweaks, RFC 4346 (2006).
TLS 1.2 =TLS 1.1 + more tweaks, RFC 5246 (2008).

TLS1.37

Importance of TLS

Originally for secure e-commerce, now used much more widely.

Retail customer access to online banking facilities.
User access to gmail, facebook, Yahoo.

Mobile applications, including banking apps.
Payment infrastructures.

User-to-cloud.

Post Snowden: back-end operations for google, yahoo, ...

TLS has become the de facto secure protocol of choice.

Used by hundreds of millions of people and devices every day.

A serious attack could be catastrophic, both in real terms and in terms of perception/confidence.

TLS is newsworthy!

TLS has been in the news.....

. BEAST, CRIME, Lucky 13, RC4
weaknesses.

. Renegotiation attack (2009), triple
Handshake attack (3/2014).

. Poor quality of implementations
(particularly in certificate handling).

Apple goto fail.
GnuUTLS certificate handling fail.

“Why Eve and Mallory Love Android” and “The
most dangerous code in the world”.

And then Heartbleed...

TLS protocol architecture

Record Protocol

TCP

Simplified view of TLS

Client Server

.

TLS Record Protocol: MAC-Encode-Encrypt (MEE)

SQN || HDR Payload
' o '
|
|
Payload MAC tag Padding
' Enavt '
HDR Ciphertext

BVAeS HMAC-MD5, HMAC-SHA1, HMAC-SHA256

DERGhBlM CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

AE and TLS Record Protocol

Dedicated AE algorithms are supported in TLS 1.2 in addition to
MEE.

* Need not conform to MEE template
e AES-GCM specified in RFC 5288.
* AES-CCM specified in RFC 6655,

AE and TLS Record Protocol

* TLS1a.2 supportin browsers:
@ Chrome: since release 30.
N :
QJ Firefox: since release 28.

(é IE: since IE11.

(source: wikipedia, Nov. 2013)

* Only 36% of Alexa top 200k servers support TLS 1.2.

(source: ssl pulse, May. 2014)
* Stronger, modern AE designs are not yet in universal use.
* 6 months ago, the situation was much bleaker.

» Attacks have driven accelerating pace of adoption of TLS 1.2.

Operation of TLS Record Protocol

Out-bound processing:
« Data from application is received and partitioned into fragments (max size 24 bytes).
e Optional data compression.
« Default option is no compression.
* Calculate MAC on sequence number, header fields, and data, and append MAC to data.
* Pad (if needed by encryption mode), then encrypt.
* Prepend 5-byte header, containing:

* Content type (1 byte, indicating content of record, e.g. handshake message, application
message, etc),

* SSL/TLS version (2 bytes),

* Length of fragment (2 bytes).

Submit to TCP.

Operation of TLS Record Protocol

In-bound processing reverses these steps:

Receive Record Protocol message, of length specified in HDR.
Decrypt.

Remove padding (CBC-mode).

Check MAC.

(Decompress payload.)

Pass payload to upper layer (no defragmentation).

TLS Record Protocol design decisions

e Stream-oriented.

* Application layer is responsible for demarcating message
boundaries if desired.

* Fragmentation done by Record Protocol when sending, but
defragmentation not done when receiving.

* Most errors are fatal.
* TLS runs over TCP, which is assumed to provide reliable transport.

* Hence any error arising during in-bound processing should be
treated as an attack.

* Session terminated with error message, keys thrown away.

* So DoS attacks are trivial to mount.

* No retransmission of lost messages by TLS itself.

TLS Record Protocol design decisions

* Implicit sequence numbers.

8-byte SQN included in MAC calculation, but not sent on the wire
as part of Record Protocol messages.

Sender and receiver are assumed to maintain local copies of
SQN, incrementing for each message sent/received.

Any replay, re-ordering or dropping of messages should be
detected through MAC verification failure at receiver.

MAC verification failure is fatal error.

* No attempt to hide message/fragment lengths.

Leads to fingerprinting attacks (e.g. Pironti-Strub-Bhargavan,
INRIA research report 8067, 2012).

Can be partially addressed by use of variable length padding in
CBC mode.

TLS Record Protocol design decisions

* Use of compression was known in theory to be dangerous.

Kelsey, FSE'04.

* Choice of MEE is not fully-supported by theory.

MtE known to be not generically secure (Bellare-Namprempre,
Asiacrypt'oa).

Krawczyk (Crypto’o1) provides support for MtE when CBC-
mode is used or when stream cipher is used.

But the analysis assumes:

* Random per message IV, no padding, block-size = MAC tag size
for CBC mode.

* Stream cipher has outputs that are indistinguishable from random.

More recent analysis of Namprempre-Rogaway-Shrimpton-
(Eurocrypt'14) says MtE provides AE if "E” is “tidy".

* TLS's choice of "E” is not tidy!

TLS Record Protocol design decisions

* The factis that suitable theory did not exist at the time TLS
was designed.

* Essentially, we need stateful AEAD security.
e Consensusthen was that "MtE"” is better than “"EtM”.

* “Authenticate what you mean to say, not an encrypted version
of it.” — the Horton principle.

* "“Maybe our MAC algorithms are weak, so we should protect
the MAC value by encrypting it.”

* Today, we have better theory, but it's hard to get it
deployed.

* Because it has to displace what's already been massively
deployed.

* This has had many interesting consequences for attacks.

Overview of TLS Record Protocol attacks

BEAST (2011)- exploits TLS 1.0's use of predictable IVs.

CRIME (2012) — exploits TLS’s support for compression.

Padding oracle attack (2002, 2003) — exploits TLS 1.0's
use of distinguishable error messages for padding and
MAC failures.

Lucky 13 (2013) — padding oracle attacks are still
possible, even after application of recommended
countermeasures; MEE with CBC is hard to implement
without side channels.

RCy4 attacks (2013) — RC4 is not such a good stream
cipher after all.

Current status

CBC-mode ciphersuites can be patched against BEAST and
Lucky 13, but their reputation has been damaged by a long
series of attacks.

Relative performance also an issue (AES-CBC + HMAC quite
slow).

RC4 pretty much dead.
AES-GCM and AES-CCM are only available for TLS 1.2.

Current status — AES-GCM and AES-CCM

AES-based ciphersuites are generally slow without AES-NI instruction.

AES-GCM is tricky to implement securely.
* Oneissue is avoiding leakage of hash key via side-channel attack.

* Also need side-channel resistant implementation of AES.

AES-GCM is relatively fast
* Especially with AES-NI and PCLMULQDAQ instructions (Intel and AMD).

* 2.53to1.03 cycles per byte, depending on processor.
http://2013.diac.cr.yp.to/slides/gueron.pdf
* Roughly twice as fast as AES-CBC + HMAC-SHA-*

 But OCB would be even faster!
AES-CCM is relatively slow.

* Two block cipher calls per block of data, similar to AES-CBC + HMAC-
SHA-*.

Current and future developments

* Fresh algorithms are under active consideration in IETFTLS
WG.

* Important for environments where AES is not available in hardware.

* Some momentum behind Salsa2o/ChaCha2o stream ciphers plus
Poly1305 MAC.

* http://tools.ietf.org/html/draft-agl-tls-chacha2opoly1305-04

* Reform of MEE to EtM to make CBC-mode easier to implement
securely.

* |IETF draft by Gutmann exists and under review.

* Deployment viaTLS extension, unclear how widely adopted it will
become.

Concluding remarks

* Secure channels are one of the most basic cryptographic
applications.

* We do not have formal models for secure channels that
accurately capture all the features expected by implementers.

* TLS as a case study highlights many of the real-world issues.
* Designinthe absence of good theory.
* Legacy and slow adoption of better crypto.
* Weak algorithms hard to remove.

* Exploitation of novel network-based, side-channel attacks.

